Abstract

Lattice preferred orientation (LPO) and seismic anisotropy of orthopyroxene (enstatite) in mantle xenoliths from Spitsbergen, Svalbard, near the Arctic, are studied. LPOs of enstatite were determined using electron backscattered diffraction (EBSD). We found four types of LPOs of orthopyroxene and defined them as type-AC, -AB, -BC, and -ABC. Type-AC LPO of orthopyroxene is defined as (100) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-AB LPO is defined as (100) plane aligned subparallel to foliation and [010] axis aligned subparallel to lineation. Type-BC LPO is defined as (010) plane aligned subparallel to foliation and [001] axis aligned subparallel to lineation. Type-ABC LPO is defined as both (100) and (010) planes aligned subparallel to foliation with a girdle distribution of both [100] and [010] axes normal to lineation and [001] axis aligned subparallel to lineation. We report for the first time the type-AB, -BC, and -ABC LPO of orthopyroxene. We found that the LPO pattern has a correlation with the content of orthopyroxene in the specimen. Nicolet 6700 FTIR (Fourier transformation infrared) study of enstatite showed that type-AC LPO was observed mostly in the samples of enstatite with low water content. It is found that the strength of the LPO of enstatite decreases with increasing water content and has a correlation with the strength of the LPO of olivine: the stronger the LPO of enstatite, the stronger the LPO of olivine. Seismic anisotropy of enstatite was smaller than that of olivine in the same specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call