Abstract

Abstract The Tso Morari Crystalline complex (TMCC) of eastern Ladakh, India, is part of the north Indian continental margin and is characterized by eclogitic enclaves embedded within ortho- and paragneisses known as the Puga Gneiss. Two fault zones bound the TMCC: the Karzok fault to the southwest and the Zildat fault to the northeast. In the present study, we carried out Electron Backscatter Diffraction study of quartz of 10 samples collected from the Puga Gneiss. The relict and recrystallized quartz grains were treated separately to understand the deformation conditions of the Puga Gneiss during early and late deformation stages related to UHP metamorphism and final stage of exhumation during retrogression, respectively. Microstructural observations suggest dynamic recrystallization in quartz and plagioclase at different temperature ranges. Misorientation analysis of both relict and recrystallized quartz grains reveals presence of Dauphiné Twins. Lattice preferred Orientation (LPO) of <c> axis of relict quartz grains generally shows more than one point maxima indicating that the relict grains preserve LPO developed during different stages of metamorphism/deformation. On the other hand, LPO of <c> axis of recrystallized grains from Karzok and Zildat fault zones shows asymmetric single girdle either normal or at an angle to the foliation plane, which suggests simple shear. We conclude that grain size reduction and recrystallization of the Puga Gneiss was greatly influenced by Dauphiné Twin and the final exhumation of the TMCC took place in a simple shear environment aided by activity along its two binding fault zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call