Abstract
Lattice preferred orientations (LPO) developed in perovskite and post-perovskite structured CaIrO3 were studied using the radial X-ray diffraction technique combined with a diamond anvil cell. Starting materials of each phase were deformed from 0.1 MPa to 6 GPa at room temperature. Only weak LPO was formed in the perovskite phase, whereas strong LPO was formed in the post-perovskite phase with an alignment of the (010) plane perpendicular to the compression axis. The present result suggests that the (010) is a dominant slip plane in the post-perovskite phase and it is in good agreement with the crystallographic prediction, dislocation observations via transmission electron microscopy, and a recent result of simple shear deformation experiment at 1 GPa–1,173 K. However, the present result contrasts markedly from the results on MgGeO3 and (Mg,Fe)SiO3, which suggested that the (100) or (110) is a dominant slip plane with respect to the post-perovskite structure. Therefore it is difficult to discuss the behavior of the post-perovskite phase in the Earth’s deep interior based on existing data of MgGeO3, (Mg,Fe)SiO3 and CaIrO3. The possible sources of the differences between MgGeO3, (Mg,Fe)SiO3 and CaIrO3 are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.