Abstract

In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices.

Highlights

  • Owing to its impact on device performance, the phase separation behavior of materials and its effect on the device morphology have attracted considerable attention as one of the powerful methods for fabricating flexible electronic devices, such as organic photovoltaics, organic field effect transistors, organic nonvolatile memory devices, and liquid crystal displays [LCDs] [1,2,3,4,5,6]

  • We found that phase separation behavior and interfacial properties of lattice-patterned LC-polymer composites were significantly affected by the inclusion of various SiO2 nanoparticles in the prepolymers

  • The distribution of SiO2 nanoparticles in the LC-polymer composites was affected by the surface functional groups of the nanoparticles

Read more

Summary

Introduction

Owing to its impact on device performance, the phase separation behavior of materials and its effect on the device morphology have attracted considerable attention as one of the powerful methods for fabricating flexible electronic devices, such as organic photovoltaics, organic field effect transistors, organic nonvolatile memory devices, and liquid crystal displays [LCDs] [1,2,3,4,5,6]. In the cases of the functionalized SiO2 nanoparticles, BTMA-SNP and MPS-SNP, the LC-polymer composites showed a similar phase separation structure regardless of the quantities of BTMA-SNP and MPS-SNP (Figure 3). The wall thickness reduction in the lattice-patterned LC-polymer composites with an increase in the quantities of SiNP-7 and SiNP-14 could be interpreted as being due to untreated SiO2 nanoparticles diffusing in the direction opposite to that of the polymerizing regions [14,15].

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.