Abstract

The ability to control lattice orientation is often an essential requirement in the growth of both 2D van der Waals (vdW) layered and nonlayered thin films. Here, a unique and universal phenomenon termed "lattice orientation heredity" (LOH) is reported. LOH enables product films (including 2D-layered materials) to inherit the lattice orientation from reactant films in a chemical conversion process, excluding the requirement on the substrate lattice order. The process universality is demonstrated by investigating the lattice transformations in the carbonization, nitridation, and sulfurization of epitaxial MoO2 , ZnO, and In2 O3 thin films. Their resultant compounds all inherit the mono-oriented crystal feature from their precursor oxides, including 2D vdW-layered semiconductors (e.g., MoS2 ), metallic films (e.g., MXene-like Mo2 C and MoN), wide-bandgap semiconductors (e.g., hexagonal ZnS), and ferroelectric semiconductors (e.g., In2 S3 ). Using LOH-grown MoN as a seeding layer, mono-oriented GaN is achieved on an amorphous quartz substrate. The LOH process presents a universal strategy capable of growing epitaxial thin films (including 2D vdW-layered materials) not only on single-crystalline but also on noncrystalline substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call