Abstract

Let Ai, A2, … , An be n linearly independent points in n-dimensional Euclidean space of a lattice Λ. The points ± A1, ±A2, . . , ±An define a closed n-dimensional octahedron (or “cross poly tope“) K with centre at the origin O. Our problem is to find a basis for the lattices Λ which have no points in K except ±A1, ±A2, … , ±An.Let the position of a point P in space be defined vectorially by1where the p are real numbers. We have the following results.When n = 2, it is well known that a basis is2When n = 3, Minkowski (1) proved that there are two types of lattices, with respective bases3When n = 4, there are six essentially different bases typified by A1, A2, A3 and one of4In all expressions of this kind, the signs are independent of each other and of any other signs. This result is a restatement of a result by Brunngraber (2) and a proof is given by Wolff (3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.