Abstract

AbstractRutile RuO2 is recognized for its outstanding acidic oxygen evolution reaction (OER) activity and notable cost advantage compared to iridium oxide for proton exchange membrane water electrolyzers (PEMWEs). However, the unsatisfactory stability of RuO2 hinders its practical application. Here, we report a lattice modulation strategy to enhance both the OER activity and stability of RuO2. Interestingly, the newly synthesized Mo0.15Nb0.05‐RuO2, with Mo doped first and then Nb, presents the greatest lattice spacing and possesses an overpotential of merely 205 mV at 10 mA cm−2, which significantly outperforms Nb0.05Mo0.15‐RuO2 (239 mV), where Nb was doped first followed by Mo, as well as the initial RuO2 (323 mV). Remarkably, Mo0.15Nb0.05‐RuO2 requires only 1.76 V to achieve 1 A cm−2 and exhibits exceptional stability in PEMWE testing, with a voltage rise of only 58 mV at 200 mA cm−2 for more than 80 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.