Abstract
We study ionic liquids interacting with electrified interfaces. The ionic fluid is modeled as a Coulomb lattice gas. We compare the ionic density profiles calculated using a popular modified Poisson-Boltzmann equation with the explicit Monte Carlo simulations. The modified Poisson-Boltzmann theory fails to capture the structural features of the double layer and is also unable to correctly predict the ionic density at the electrified interface. The lattice Monte Carlo simulations qualitatively capture the coarse-grained structure of the double layer in the continuum. We propose a convolution relation that semiquantitatively relates the ionic density profiles of a continuum ionic liquid and its lattice counterpart near an electrified interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.