Abstract

Traffic flow on curved road is irregular, and it is more complicated than the one on straight road. In order to investigate the effect of lane-change behavior upon traffic dynamics on curved road, an extended lattice hydrodynamic model for two-lane traffic flow on curved road is proposed and studied analytically and numerically in this paper. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of traffic flow varies with lane-changing coefficient. The time- dependent Ginzburg–Landau equation is derived near the critical point to describe the nonlinear traffic behavior. Meanwhile, the Burgers, Korteweg–de Vries (KdV) and modified KdV equations are derived to describe the nonlinear density waves in the stable, metastable and unstable regions, respectively. The simulations are given to verify the analytical results. The results show that there are two distinct types of jamming transition. One is conventional jamming transition to the kink jam, and the other is jamming transition to the chaotic jam through kink jam. The numerical results also indicate that lane-changing behavior has a stabilizing effect on traffic flow on curved road, and it also can suppress the occurrence of chaotic phenomena.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.