Abstract

Considering the effect of density difference, an extended lattice hydrodynamic model for bidirectional pedestrian flow is proposed in this paper. The stability condition is obtained by the use of linear stability analysis. It is shown that the stability of pedestrian flow varies with the reaction coefficient of density difference. Based on nonlinear analysis method, the Burgers, Korteweg–de Vries (KdV) and modified Korteweg–de Vries (MKdV) equations are derived to describe the triangular shock waves, soliton waves and kink–antikink waves in the stable, metastable and unstable regions, respectively. The results show that jams may be alleviated by considering the effect of density difference. The findings also indicate that in the process of building and subway station design, a series of auxiliary facilities should be considered in order to alleviate the possible pedestrian jams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call