Abstract

An exact expression is derived for the $(\omega,p)=0$ thermal correlator of shear stress in SU($N_c$) lattice gauge theory. I remove a logarithmic divergence by taking a suitable linear combination of the shear correlator and the correlator of the energy density. The operator product expansion shows that the same linear combination has a finite limit when $\omega\to\infty$. It follows that the vacuum-subtracted shear spectral function vanishes at large frequencies at least as fast as $\alpha_s^2(\omega)$ and obeys a sum rule. The trace anomaly makes a potential contribution to the spectral sum rule which remains to be fully calculated, but which I estimate to be numerically small for $T\gtrsim 3T_c$. By contrast with the bulk channel, the shear channel spectral density is then overall enhanced as compared to the spectral density in vacuo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.