Abstract

We present lattice simulation results corresponding to an SU ( 2 ) pure gauge theory defined on the orbifold space E 4 × I 1 , where E 4 is the four-dimensional Euclidean space and I 1 is an interval, with the gauge symmetry broken to a U ( 1 ) subgroup at the two ends of the interval by appropriate boundary conditions. We demonstrate that the U ( 1 ) gauge boson acquires a mass from a Higgs mechanism. The mechanism is driven by two of the extra-dimensional components of the five-dimensional gauge field which play respectively the role of the longitudinal component of the gauge boson and a massive real physical scalar, the Higgs particle. Despite the non-renormalizable nature of the theory, we observe only a mild cut-off dependence of the physical observables. We also show evidence that there is a region in the parameter space where the system behaves in a way consistent with dimensional reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.