Abstract

A general theory for collective diffusion in interacting lattice-gas models is presented. The theory is based on the description of the kinetics in the lattice gas by a master equation. A formal solution of the master equation is obtained using the projection-operator technique, which gives an expression for the relevant correlation functions in terms of continued fractions. In particular, an expression for the collective dynamic structure factor S c is derived. The collective diffusion coefficient D c is obtained from S c by the Kubo hydrodynamic limit. If memory effects are neglected (Darken approximation), it turns out that D c can be expressed as the ratio of the average jump rate <w> and of the zero-wavevector static structure factor S(0). The latter is directly proportional to the isothermal compressibility of the system, whereas <w> is expressed in terms of the multisite static correlation functions gn. The theory is applied to two-dimensional lattice systems as models of adsorbates on crystal surfaces. Three examples are considered. First, the case of nearest-neighbour interactions on a square lattice (both repulsive and attractive). Here, the theoretical results for D c are compared to those of Monte Carlo simulations. Second, a model with repulsive interactions on the triangular lattice. This model is applied to NH 3 adsorbed on Re(0001) and the calculations are compared to experimental data. Third, a model for oxygen on W(110). In this case, the complete dynamic structure factor is calculated and the width of the quasi-elastic peak is studied. In the third example the gn are calculated by means of the discretized version of a classical equation for the structure of liquids (the Crossover Integral Equation), whereas in the other examples they are computed using the Cluster Variation Method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.