Abstract

A lattice-gas model of biased-random walkers is used to simulate the escaping pedestrian flow under the open boundary condition in corridor. Given that the total number of people is unchanging, we have studied the evolution of pedestrian flow by varying parameters of system size. Relationships between parameters of system size and the transition time are discussed in this paper. Scaling behaviour is found as follows: the transition time tc scales as tc∝W−0.85±0.04 and tc∝D, where W is the width of corridor and D is the strength of drift. However, the other parameters are found to have little influence on the transition time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.