Abstract
We start from a low-energy effective field theory for interacting fermions on the lattice and expand in the hopping parameter to derive the nearest-neighbor interactions for a lattice gas model. In this model, the renormalization of couplings for different lattice spacings is inherited from the effective field theory, systematic errors can be estimated a priori, and the breakdown of the lattice gas model description at low temperatures can be understood quantitatively. We apply the lattice gas method to neutron matter and compare with results from a recent quantum simulation.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.