Abstract

We construct a high order finite difference method in which quadrature points do not need to have a lattice structure. In order to develop our method we show two tools using Fourier transform and Taylor expansion, respectively. On the other hand, the backward heat conduction problem is a typical example of ill-posed problems in the sense that the solution is unstable for errors in data. Our aim is to create a measles method which can be applied to the ill-posed problem. From numerical experiments we confirmed that our method is effective in order to solve the two-dimensional backward heat conduction equation subject to mixed boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.