Abstract
AbstractWe focus on a particular class of computably enumerable (c. e.) degrees, the array noncomputable degrees defined by Downey, Jockusch, and Stob, to answer questions related to lattice embeddings and definability in the partial ordering (ℜ︁, ≤) of c. e. degrees under Turing reducibility. We demonstrate that the latticeM5 cannot be embedded into the c. e. degrees below every array noncomputable degree, or even below every nonlow array noncomputable degree. As Downey and Shore have proved that M5 can be embedded below every nonlow2 degree, our result is the best possible in terms of array noncomputable degrees and jump classes. Further, this result shows that the array noncomputable degrees are definably different from the nonlow2 degrees. We note also that there are embeddings of M5 in which all five degrees are array noncomputable, and in which the bottom degree is the computable degree 0 but the other four are array noncomputable. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.