Abstract

Predicting the domain structures and properties in both bulk single crystal and thin film ferroelectrics using the phase-field approach requires the knowledge of fundamental mechanical, electrical, and electromechanical coupling properties of a single-domain state. In this work, the elastic properties and structural parameters of cubic single crystals as well as tetragonal, orthorhombic, and rhombohedral BaTiO3 single domain states are obtained using first-principles calculations under the local density approximation. The calculated lattice constants, bulk modulus, and elastic constants are in good agreement with experiments for both the cubic paraelectric phase and the low-temperature ferroelectric phases. Spontaneous polarizations for all three ferroelectric phases and the electrostrictive coefficients of cubic BaTiO3 are also computed using the Berry’s phase approach, and the results agree well with existing experimentally measured values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.