Abstract
Under the Born-Oppenheimer approximation, the electronic ground state evolves adiabatically and can accumulate geometrical phases characterized by the molecular Berry curvature. In this work, we study the effect of the molecular Berry curvature on the lattice dynamics in a system with broken time-reversal symmetry. The molecular Berry curvature is formulated based on the single-particle electronic Bloch states. It manifests as a nonlocal effective magnetic field in the equations of motion of the ions that are beyond the widely adopted Raman spin-lattice coupling model. We employ the Bogoliubov transformation to solve the quantized equations of motion and to obtain phonon polarization vectors. We apply our formula to the Haldane model on a honeycomb lattice and find a large molecular Berry curvature around the Brillouin zone center. As a result, the degeneracy of the optical branches at this point is lifted intrinsically. The lifted optical phonons show circular polarizations, possess large phonon Berry curvature, and have a nearly quantized angular momentum that modifies the Einstein-de Haas effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.