Abstract

We report an experimental and theoretical lattice-dynamics study of yttrium orthovanadate $({\text{YVO}}_{4})$ up to 33 GPa together with a theoretical study of its structural stability under pressure. Raman-active modes of the zircon phase are observed up to 7.5 GPa, where the onset of an irreversible zircon-to-scheelite phase transition is detected, and Raman-active modes in the scheelite structure are observed up to 20 GPa, where a reversible second-order phase transition occurs. Our ab initio total-energy calculations support that the second-order phase transition in ${\text{YVO}}_{4}$ is from the scheelite to the monoclinic M-fergusonite structure. The M-fergusonite structure remains up to 33 GPa and on pressure release the sample reverts back to the metastable scheelite phase. Raman- and IR-mode symmetries, frequencies, and pressure coefficients in the zircon, scheelite, and M-fergusonite phases are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.