Abstract

We present results from lattice dynamics calculations on the phonon modes and specific heat of SiGe core-shell nanowires. The results show that phonon dispersion relation of SiGe nanowires consists of four acoustic branches. The frequency of the first optical mode at Γ point shifts to low frequency as the Ge concentration is increasing. There are three strong peaks in the spectra of density of states. The peaks at 9.0 THz and 15.0 THz can be attributed to the high frequency Ge-Ge and Si-Si bond vibration. The broad peak around 3.0 THz of pure silicon nanowire corresponds to the transverse acoustic branch of bulk silicon. Moreover, specific heat of SiGe nanowires increases (decreases) with the increase of the concentration x at low (high) temperature. The specific heat at 300 K can be fitted by C V = x 2 C Ge + (1 − x)C Si, where C Ge and C Si are specific heat of pure germanium and silicon nanowires respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.