Abstract
We report here the analysis of vibrational properties of the ZnMoO4 by using theoretical and experimental approaches, well as results of high pressure experiments in this system. The analysis of the lattice dynamics calculations through the classical rigid ion model, was applied to determine the mode assignment in the triclinic phase of the ZnMoO4. Additionally, the experimental high-pressure Raman spectra of the ZnMoO4 were carried out from 0GPa up to 6.83GPa to shed light on the structural stability of this system. The pressure-dependent studies showed that this crystal undergoes a first order phase transition at around 1.05GPa. The Raman spectrum analysis of the new phase shows a significant change in the number of modes for the spectral range of 20-1000cm-1. The instability of this phase occurs due to the decrease of the MoO bond lengths in the high-pressure phase, connected with tilting and/or rotations of the MoO4 tetrahedra leading to a disorder at the MoO4 sites. The second and third phase transformations were observed, respectively, at about 2.9GPa and 4.77GPa, with strong evidences, in the Raman spectra, of crystal symmetry change. The principal component analysis (PCA) and the hierarchical cluster analysis (HCA) were used in order to infer the intervals of pressure where the different phases do exist. Discussion about the number of non equivalent sites for Mo ions and the kind of coordination for molybdenum atoms is also furnished.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.