Abstract

La1-xAxCoO3-δ (A = Sr, Ba) nanoparticles used as an inert anode in molten salts were characterized using phonon vibrations, and their compositions and morphologies were investigated. These nanoparticles were used for nanostructure fabrication of an inert anode to reduce oxide ion transportation. The singularity structure changes with increasing Sr ion content in La1-xSrxCoO3-δ nanoparticles showed a transient of spin state change from a low-spin state to intermediate- and/or high-spin states. The valencies of Co ion in La1-xSrxCoO3-δ were 3.2 and 3.3 for La0.8Sr0.2CoO3-δ and La0.6Sr0.4CoO3-δ, respectively, suggesting that oxygen defects were introduced by Sr ion doping in La1-xSrxCoO3-δ nanoparticles. In contrast, the valencies of Co ion in La1-xBaxCoO3-δ were 3.1 and 3.0 for La0.5Ba0.5CoO3-δ and La0.4Ba0.6CoO3-δ, respectively, suggesting that oxygen defects were introduced slightly by Ba ion doping in La1-xBaxCoO3-δ nanoparticles. The isotropic phonon vibrations of La1-xAxCoO3-δ nanoparticles were estimated using high-temperature synchrotron radiation X-ray diffraction measurements. Crystal anisotropy measurements of phonon vibrations indicated that the oxide ions diffused preferentially along the (a, b) plane in the La1-xSrxCoO3-δ crystal lattice and toward the c-axis direction in the La1-xBaxCoO3-δ crystal lattice. These results suggest that the oxide ion transportation was curtailed using layered nanoparticles to fabricate an inert anode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call