Abstract

Using crystallographic information and empirical potentials derived from fitting the vibrational frequencies of all the substances under study, together with those of a group of silicates and oxides, a Born–von Karman rigid-ion lattice-dynamical model has been applied to the whole Brillouin zone in calcite, aragonite (α- and β-CaCO3, respectively), magnesite (MgCO3) and dolomite [CaMg(CO3)2]. The Raman and IR spectra are satisfactorily reproduced and interpreted by these calculations; there is also very good agreement with atomic anisotropic displacement parameters (a.d.p.'s) derived from accurate crystal structure refinement by various authors and with the experimental values of thermodynamic functions over a wide range of temperatures. On these vibrational grounds, the stability of calcite with respect to aragonite at high temperature can be accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.