Abstract

During biomineralization, organisms control the formation and morphology of a mineral using biomacromolecules. The biomacromolecules that most strongly interact with the growing crystals frequently get occluded within. Such an observation has been recently obtained for the calcium carbonate producing coccolithophore species Pleurochrysis carterae. Coccolithophores are unicellular algae that produce calcified scales built from complex-shaped calcite crystals, termed coccoliths. It is unclear how widespread the phenomenon of biomacromolecular occlusion within calcite crystals is in calcifying haptophytes such as coccolithophores. Here, the coccoliths of biological replicates of the bloom forming Emiliania huxleyi are compared with that of Pleurochrysis carterae, two species with different coccolith morphologies and crystal growth mechanisms. From high-resolution synchrotron X-ray diffraction, changes in the lattice parameters of coccolith calcite, after heating to 450°C, are observed and associated with macrostrain originating from occluded biomacromolecules. We propose a mechanism governing the biomacromolecules' interaction with the growing coccolith crystals and their likely origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.