Abstract
The temperature dependence of the electronic structure of the quasi-two-dimensional material $1T\text{\ensuremath{-}}\mathrm{Ta}{\mathrm{S}}_{2}$ is revisited by considering angle-resolved photoemission spectroscopy (ARPES) and density functional theory to calculate the imaginary part of the static electronic susceptibility characterizing the nesting strength. While nesting appears to play a role in the high temperature phase, the ARPES line shapes reveal peculiar spectral properties which are not consistent with the standard two-dimensional Peierls scenario for the formation of a charge density wave. The temperature dependence of these anomalous spectral features suggests a lattice-distortion enhanced electron-phonon interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.