Abstract
Perovskite solar cells have witnessed a surge in interest as a promising technology for low-cost, high-efficiency photovoltaics with certified power conversion efficiencies beyond 25%. However, their commercial development is hindered by poor stability and nonradiative losses that restrict their approach to the theoretical efficiency limit. Using ab initio nonadiabatic molecular dynamics, we demonstrate that nonradiative charge recombination is suppressed when the iodide in formamidinium lead iodide (FAPbI3) is partially replaced with pseudohalide anions (SCN-, BF4-, and PF6-). The replacement breaks the symmetry of the system and creates local structural distortion and dynamic disorder, decreasing electron-hole overlap and nonadiabatic electron-vibrational coupling. The charge carrier lifetime is found to increase with increased structural distortion and is the longest for PF6-. This work is fundamentally relevant to the design of high-performance perovskite materials for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.