Abstract

Electrochemical reduction of CO2 to HCOOH (ERC-HCOOH) is one of the most feasible and economically valuable ways to achieve carbon neutrality. Unfortunately, achieving optimal activity and selectivity for ERC-HCOOH remains a challenge. Herein, ultrathin Bi nanosheets (NS) with lattice dislocations (LD-Bi) were prepared by the topological transformation of Bi2O2CO3 NS under high current conditions. LD-Bi exhibited excellent activity and selectivity as well as stability in ERC-HCOOH. Electrochemical tests and DFT calculations revealed that the excellent performance of LD-Bi was attributed to lattice dislocations, which can induce the production of more active sites on the catalyst surface and improve the electronic transfer ability. In addition, LD-Bi was beneficial to enhance the adsorption of CO2 and key reaction intermediates (OCHO*), thus improving the reaction kinetics. The result provides a unique perspective on the crucial role of lattice dislocations, which may have a significant impact on highly selective electrochemical conversion of CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.