Abstract

We propose a lattice counterpart of diffeomorphism symmetry in the continuum. A functional integral for quantum gravity is regularized on a discrete set of space-time points, with fermionic or bosonic lattice fields. When the space-time points are positioned as discrete points of a continuous manifold, the lattice action can be reformulated in terms of average fields within local cells and lattice derivatives. Lattice diffeomorphism invariance is realized if the action is independent of the positioning of the space-time points. Regular as well as rather irregular lattices are then described by the same action. Lattice diffeomorphism invariance implies that the continuum limit and the quantum effective action are invariant under general coordinate transformations - the basic ingredient for general relativity. In our approach the lattice diffeomorphism invariant actions are formulated without introducing a metric or other geometrical objects as fundamental degrees of freedom. The metric rather arises as the expectation value of a suitable collective field. As examples, we present lattice diffeomorphism invariant actions for a bosonic non-linear sigma-model and lattice spinor gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.