Abstract

We clarify the relation between the improvement of dispersion relations in the fermion sector of lattice regularized QCD and the improvement of bulk thermodynamic observables. We show that in the infinite temperature limit the cut-off dependence in dispersion relations can be eliminated up to O(a^n) corrections, if the quark propagator is chosen to be rotationally invariant up to this order. In bulk thermodynamic observables this eliminates cut-off effects up to the same order at vanishing as well as non-vanishing chemical potential. We furthermore show, that in the infinite temperature, ideal gas limit the dependence of finite cut-off corrections on the chemical potential is given by Bernoulli polynomials which are universal as they do not depend on a particular discretization scheme. We explicitly calculate leading and next-to-leading order cut-off corrections for some staggered and Wilson fermion type actions and compare these with exact evaluations of the free fermion partition functions. This also includes the chirally invariant overlap and domain wall fermion formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.