Abstract
Engineering defective structures in an attempt to modify properties is an established technique in materials chemistry, yet, no models exist which can predict the structure of perovskite compounds containing extrinsic point defects such as vacancies. An empirically derived predictive model, based solely on chemical composition and published ionic radii has been developed. Effective vacancy sizes were derived both empirically from an existing model for pseudocubic lattice-constants, as well as experimentally, from average bond lengths calculated from neutron diffraction data. Compounds of lanthanum-doped barium titanate and strontium-doped magnesium titanate were synthesized with vacancies engineered on the A and B sites. Effective vacancy sizes were then used in empirical models to predict changes in lattice constants. Experimentally refined bond lengths used in the derivation of an effective vacancy size seemed to overestimate the effect of the point defects. Conversely, using calculated vacancy sizes, derived from a previously reported predictive model, showed significant improvements in the prediction of the pseudocubic perovskite lattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.