Abstract

Seemingly unrelated regressions (SUR) models appear frequently in econometrics and in the analyses of repeated measures designs and longitudinal data. It is known that iterative algorithms are generally required to obtain the MLEs of the regression parameters. Under a minimal set of lattice conditional independence (LCI) restrictions imposed on the covariance structure, however, closed-form MLEs can be obtained by standard linear regression techniques (Andersson and Perlman, 1993, 1994, 1998). In this paper, simulation is used to study the efficiency of these LCI model-based estimators. We also propose two possible improvements of the usual two-stage estimators for the regression parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.