Abstract

For any negative definite plumbed 3-manifold M we construct from its plumbed graph a graded ℤ[U] -module. This, for rational homology spheres, conjecturally equals the Heegaard–Floer homology of Ozsváth and Szabó, but it has even more structure. If M is a complex singularity link then the normalized Euler-characteristic can be compared with the analytic invariants. The Seiberg–Witten Invariant Conjecture of [16], [13] is discussed in the light of this new object.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.