Abstract
In the pursuit of understanding lattice capacity threshold effects of oxide solid solutions for their supported Ni catalysts, a series of Ca2+-doped CeO2 solid solutions with 10 wt% Ni loading (named Ni/CaxCe1-xOy) was prepared using a sol-gel method and used for CO2 methanation. The lattice capacity of Ca2+ in the lattice of CeO2 was firstly determined by the XRD extrapolation method, corresponding to a Ca/(Ca + Ce) molar ratio of 11%. When the amount of Ca2+ in the CaxCe1-xOy supports was close to the CeO2 lattice capacity for Ca2+ incorporation, the obtained Ni/Ca0.1Ce0.9Oy catalyst possessed the optimal intrinsic activity for CO2 methanation. XPS, Raman spectroscopy, EPR and CO2-TPD analyses revealed the largest amount of highly active moderate-strength alkaline centers generated by oxygen vacancies. The catalytic reaction mechanisms were revealed using in situ IR analysis. The results clearly demonstrated that the structure and reactivity of the Ni/CaxCe1-xOy catalyst exhibited the lattice capacity threshold effect. The findings offer a new venue for developing highly efficient oxide-supported Ni catalysts for low-temperature CO2 methanation reaction and enabling efficient catalyst screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.