Abstract
The moving contact line problem of liquid-vapor interfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Phys. Rev. E 2004, 69, 032602]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.