Abstract

A rapid pitch-up and pitch-down maneuver of a chord-wise flexible wing in a steady free stream is studied by using a lattice Boltzmann flexible particle method in a three-dimensional space at a chord based Reynolds number of 100. The pitching rates, flexibility, and wing density are systematically varied, and their effects on aerodynamic forces are investigated. It is demonstrated that the flexibility can be utilized to significantly improve lift forces. The flexible wing has a larger angular momentum due to elasticity and inertia and generates a larger leading edge vortex as compared with a rigid wing. Such lift enhancement occurs mainly during the pitch-down motion while a large stall angle is produced during the pitch-up motion. At a low pitch rate, the flexibility cannot improve lift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.