Abstract

Aerosol particles like dust involved in the air can pass through the respiratory tract and can be deposited there. The long-term deposition of fine solid particles in the lower airways can stimulate lung diseases. In contrary, for the healing of certain lung diseases, the delivering of medicament’s to the lower airways is important. Computational Fluid Dynamics (CFD) enables to simulate the flow field and the particles deposition in the lungs. By this method, it is possible to identify the probability of reaching particles into the lower airways through the tracheo-bronchial tree. In this paper, the flow field in the child lungs (5-year-old) in a constant sedentary breathing regime was simulated using the Lattice Boltzmann Method (LBM) with the LES Smagorinsky turbulence model. To verify the calculated velocities by LBM in OpenLB software, the finite volume RANS simulation in Star-CCM+ was performed. The results showed the good agreement in the upper part of the airways. Some discrepancies were found in the lower part. Nevertheless, LBM and OpenLB were proven to be a capable tool to solve the air flow through the respiratory tract and will be used for particle deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.