Abstract

The coefficients of oil and water transfer resistance in porous media are the basis of numerical study on the migration of contamination in the pipeline, soil cleaning, oilfield water flooding, and oilfield water treatment. Based on the quartet structure generation set, the porous media with random distribution are constructed. The lattice Boltzmann method is used to simulate the mesoscopic migration of oil and water in porous media. Then the distribution law of oil and water velocity and pressure in porous media is analyzed, and the fitting equations of oil and water resistance coefficients are obtained under different porosity. The results show that when the oil and water migrate in porous media, the viscous resistance coefficient is larger than the inertia resistance factor, and the viscosity resistance coefficient of water is obviously higher than that of oil, while the coefficient of inertia resistance of oil and water is nearly same.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.