Abstract
In the present study, mathematical modeling is performed to simulate natural convection of Al 2O 3/water nanofluids in a vertical square enclosure using the lattice Boltzmann method (LBM). Results indicate that the average Nusselt number increases with the increase of Rayleigh number and particle volume concentration. The average Nusselt number with the use of nanofluid is higher than the use of water under the same Rayleigh number. However, the heat transfer rate of the nanofluid takes on a lower value than water at a fixed temperature difference across the enclosure mainly due to the significant enhancement of dynamic viscosity. Furthermore, great deviations of computed Nusselt numbers using different models associated with the physical properties of a nanofluid are revealed. The present results are well validated with the works available in the literature and consequently LBM is robust and promising for practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.