Abstract

The aim of this work is to conduct numerical study of fluid flow and natural convection heat transfer by utilizing the nanofluid in a two-dimensional horizontal channel consisting of a sinusoidal obstacle by lattice Boltzmann method (LBM). The fluid in the channel is a water-based nanofluid containing Cuo nanoparticles. Thermal conductivity and nanofluid’s viscosity are calculated by Patel and Brinkman models, respectively. A wide range of parameters such as the Reynolds number ([Formula: see text]–400) and the solid volume fraction ranging ([Formula: see text]–0.05) at different non-dimensional amplitude of the wavy wall of the sinusoidal obstacle ([Formula: see text]–20) on the streamlines and temperature contours are investigated in the present study. In addition, the local and average Nusselt numbers are illustrated on lower wall of the channel. The sensitivity to the resolution and representation of the sinusoidal obstacle’s shape on flow field and heat transfer by LBM simulations are the main interest and innovation of this study. The results showed that increasing the solid volume fraction [Formula: see text] and Reynolds number Re leads to increase the average Nusselt numbers. The maximum average Nusselt number occurs when the Reynolds number and solid volume fraction are maximum and amplitude of the wavy wall is minimum. Also, by decreasing the [Formula: see text], the vortex shedding forms up at higher Reynolds number in the wake region downstream of the obstacle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.