Abstract

The aim of this paper is investigating the forced convection heat transfer in a channel with transverse rectangular cavities using the lattice Boltzmann method (LBM) which is not available in the literature yet. The effects of the Reynolds number (100–400), cavity aspect ratio ([Formula: see text], 0.5, 1.0), distance of cavities from each other ([Formula: see text]) in fixed depth of cavity ([Formula: see text]) on the velocity and temperature profiles are studied. Moreover, the flow patterns such as deflection and re-circulation zone inside the cavities are obtained. The local and averaged Nusselt numbers on the channel walls are achieved. The results show that the channel with cavities achieves heat transfer enhancements relative to the smooth channel. For the constant cavity aspect ratio, the maximum value of averaged Nusselt number in the channel is obtained in the case of [Formula: see text]. Heat transfer to the working fluids increases significantly by increasing the aspect ratio. The existed results are used to ascertain the validity of the numerical code and excellent agreement between results was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call