Abstract
We investigate the interaction of two immiscible fluids in a head-on device geometry, where both fluids are streaming opposite to each other. The simulations are based on the two-dimensional (2D) lattice Boltzmann method (LBM) using the Rothman and Keller (RK) model. We validate the LBM code with several benchmarks such as the bubble test, static contact angle, and layered flow. For the first time, we simulate a head-on device by forcing periodicity and a volume force to induce the flow. From low to high flow rates, three main flow patterns are observed in the head-on device, which are dripping-squeezing, jetting-shearing, and threading. In the squeezing regime, the flow is steady and the droplets are equal. The jetting-shearing flow is not as stable as dripping-squeezing. Moreover, the formation of droplets is shifted downstream into the main channel. The last flow form is threading, in which the immiscible fluids flow parallel downstream to the outlet. In contrast to other studies, we select larger microfluidic channels with 1-mm channel width to achieve relatively high volumetric fluxes as used in chemical synthesis reactors. Consequently, the capillary number of the flow regimes is smaller than 10−5. In conclusion, the simulation compares well to experimental data.
Highlights
Microfluidics became an attractive field of research, since it has a wide range of applications such as lab-on-a-chip devices, cosmetics, drug delivery, microfabrication, and chemical synthesis [1,2]
We show the influence of the volumetric flux on the droplet formation in the head-on device
The we simulation on this scale was challenging due to the small capillary number of the flow regime
Summary
Microfluidics became an attractive field of research, since it has a wide range of applications such as lab-on-a-chip devices, cosmetics, drug delivery, microfabrication, and chemical synthesis [1,2]. Droplet formation in liquid/liquid or gas/liquid systems is an important area of study. One of the simplest but most common methods to generate droplets is the use of appropriate channel geometries [5,6,7]. The scope of this study is droplet formation in a 1-mm channel geometry. In this range, droplet flow is successfully used in liquid/liquid systems for extraction [8,9,10] and synthesis of fine chemicals and pharmaceuticals [11,12,13,14]. In gas/liquid systems, applications include membrane fuel cells [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.