Abstract

The paper presents a lattice Boltzmann (LB) method for premixed and nonpremixed combustion simulations with nonreflective boundary conditions, in contrast to Navier–Stokes solvers or hybrid schemes. The current approach employs different sets of distribution functions for flow, temperature and species fields, which are fully coupled. The discrete equilibrium density distributions are obtained from the Hermite expansions thus thermal compressibility is included. The coupling among the momentum, energy and species transport enables the model to be applicable for reactive flows with chemical heat release. The characteristic boundary conditions are incorporated into the LB scheme to avoid numerical reflections. The multi-relaxation-time collision schemes are applied to all the LB solution procedures to improve numerical stability. With detailed thermodynamics and chemical mechanisms for hydrogen-air, the LB modelling framework is validated against both premixed flame propagation and nonpremixed counterflow diffusion flame benchmarks. Simulations of circular expanding premixed flames further demonstrate the capability of the new reactive LB method. The developed LB methodology retains the advantages of classic LB methods and extends the LB capability to low Mach number combustion with potential applications in mesoscale and microscale combustors, catalysis, fuel cells, batteries and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call