Abstract

We simulate the gas flow and heat transfer in micro-Couette flow by the lattice Boltzmann method (LBM). A new boundary treatment is adopted in the numerical experiment in order to capture the velocity slip and the temperature jump of the wall boundary. Velocity and temperature profiles are in good agreement with the analytic results, which exhibits the availability of this model and boundary treatment in describing thermal micro-flow with viscous heat dissipation. We also find the upper boundary's temperature jump is zero at the critical Ec, which is around 3.0 with different Kn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.