Abstract

This paper uses Lattice Boltzmann computation to obtain multiple fluid flow solutions in square and rectangular cavity that involves movement of the facing and non-facing walls. For some aspect ratios the double-sided lid-driven cavity problem has multiple steady fluid flow solutions. In double-sided rectangular cavities, a single-relaxation-time model is used to over out Lattice Boltzmann computations in order to receive multiple fluid flow solutions. Three numerical examples are taken into consideration on this work. First one is double-sided square cavity with parallel wall movement, double-sided non-facing rectangular lid-driven cavity with parallel wall movement and the final one is the double-sided lid-driven rectangular cavity with antiparallel wall movement. When the walls move in pairs, multiple fluid flow solutions exist above critical Reynolds numbers. In the present work, five multiple solutions of parallel wall movement and seven multiple solutions of antiparallel wall movement is acquired. The boundary conditions used are stable and also correct. It might be inferred that the present mesoscopic Lattice Boltzmann study produces comes about that are in phenomenal similarity with prior customary numerical perceptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.