Abstract

Extending the functionality of ubiquitous Si-based microelectronic devices often requires combining materials with different lattice parameters and thermal expansion coefficients. In this paper, scanning X-ray nanodiffraction is used to map the lattice bending produced by thermal strain relaxation in heteroepitaxial Ge microcrystals of various heights grown on high aspect ratio Si pillars. The local crystal lattice tilt and curvature are obtained from experimental three-dimensional reciprocal space maps and compared with diffraction patterns simulated by means of the finite element method. The simulations are in good agreement with the experimental data for various positions of the focused X-ray beam inside a Ge microcrystal. Both experiment and simulations reveal that the crystal lattice bending induced by thermal strain relaxation vanishes with increasing Ge crystal height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.