Abstract

Nearly all of the currently used signature schemes, such as RSA or DSA, are based either on the factoring assumption or the presumed intractability of the discrete logarithm problem. As a consequence, the appearance of quantum computers or algorithmic advances on these problems may lead to the unpleasant situation that a large number of today’s schemes will most likely need to be replaced with more secure alternatives. In this work we present such an alternative—an efficient signature scheme whose security is derived from the hardness of lattice problems. It is based on recent theoretical advances in lattice-based cryptography and is highly optimized for practicability and use in embedded systems. The public and secret keys are roughly $1.5$ kB and $0.3$ kB long, while the signature size is approximately $1.1$ kB for a security level of around $80$ bits. We provide implementation results on reconfigurable hardware (Spartan/Virtex-6) and demonstrate that the scheme is scalable, has low area consumption, and even outperforms classical schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.