Abstract

A character sequence comprises at least one or more segmentation alternatives. This can be considered segmentation ambiguity and may weaken segmentation performance in word segmentation. Proper handling of such ambiguity lessens ambiguous decisions on word boundaries. Previous works have achieved remarkable segmentation performance and alleviated the ambiguity problem by incorporating the lattice, owing to its ability to capture segmentation alternatives, along with graph-based and pre-trained models. However, multiple granularity information, including character and word, in a lattice that encodes with such models may not be attentively exploited. To strengthen multi-granularity representations in a lattice, we propose the Lattice ATTentive Encoding (LATTE) method for character-based word segmentation. Our model employs the lattice structure to handle segmentation alternatives and utilizes graph neural networks along with an attention mechanism to attentively extract multi-granularity representation from the lattice for complementing character representations. Our experimental results demonstrated improvements in segmentation performance on the BCCWJ, CTB6, and BEST2010 datasets in three languages, particularly Japanese, Chinese, and Thai.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.