Abstract

Context: The pathogenesis of cardiomyocyte death is closely associated with mitochondrial homeostasis via poorly understood mechanisms.Objective: The aim of our study is to explore the contribution of large tumor suppressor kinase 2 (LATS2) to the apoptosis of cardiomyocyte H9C2 cells.Materials and Methods: Adenovirus-mediated LATS2 overexpression was carried out in H9C2 cells. The cell viability and apoptosis rate were measured via an MTT assay, TUNEL staining, western blotting, an ELISA, and an LDH release assay. Mitophagy was quantified using immunofluorescence and western blotting.Results: The overexpression of LATS2 in H9C2 cells drastically promoted cell death. Molecular investigations showed that LATS2 overexpression was associated with mitochondrial injury, as evidenced by increased mitochondrial ROS production, reduced antioxidant factor levels, increased cyt-c liberation into the nucleus and activated mitochondrial caspase-9-dependent apoptotic pathway activity. Furthermore, our results demonstrated that LATS2-mediated mitochondrial malfunction by repressing mitophagy and that the reactivation of mitophagy could sustain mitochondrial integrity and homeostasis in response to LATS2 overexpression. Furthermore, we found that LATS2 inhibited mitophagy by inactivating the Prx3-Mfn2 axis. The reactivation of Prx3-Mfn2 pathways abrogated the LATS2-mediated inhibition of mitochondrial apoptosis in H9C2 cells.Conclusions: The overexpression of LATS2 induces mitochondrial stress by repressing protective mitophagy in a manner dependent on Prx3-Mfn2 pathways, thus reducing the survival of H9C2 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call