Abstract

AbstractAim The laying of eggs and the building of a nest structure to accommodate them are two of the defining characteristics of members of the class Aves. Nest structures vary considerably across avian taxa and for many species the structure of the completed nest can have important consequences both for parents and their offspring. While nest characteristics are expected to vary adaptively in response to environmental conditions, large‐scale spatial variation in nest characteristics has been largely overlooked. Here, we examine the effects of latitudinal variation in spring temperatures on nest characteristics, including insulatory properties, and reproductive success of blue tits, Cyanistes caeruleus, and great tits, Parus major.Location Great Britain.Methods Nests and reproductive data were collected from seven study sites, spread over 5° of latitude. The nest insulatory properties were then determined before the nests were separated into nest base material and cup lining material.Results As spring temperatures increased with decreasing latitude, the mass of the nest base material did not vary in either species, while the mass of the cup lining material and nest insulatory properties decreased in both species. This suggests that in response to increasing temperatures the breeding female reduces the mass of the cup lining material, thereby maintaining an appropriate microclimate for incubating and brooding. The mean first egg date of both species advanced with decreasing latitude and increasing spring temperatures, although clutch size and brood size at hatching and fledging did not vary.Main conclusions This is the first study to demonstrate that the nest‐construction behaviour of birds varies in response to large‐scale spatial variation in ambient temperatures. Therefore, nest composition reliably indicates environmental conditions and we suggest that studies of nest structure may be sentinels for the early signs of rapid climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.